
Go Pro with 2sxc
REST and JS APIs

 Data in a DB
 Edit-dialog 50%

 WYSIWYG TinyMCE
 Asset Management 80%

 Data-Management,
Import/Export, Versioning,
Data-Query, Multi-Language,
Permissions, 95%

 Advanced: Custom GUIs,
Data-Interfaces and Custom
WebAPIs 99%

Web Modules / Apps Today

You can have this in
minutes for free,
when you leverage 2sxc

Overview

 Developing JS in 2017

 REST-ful WebAPI

 Using REST in jQuery, Angular, React, KO

 JS API to execute CMS Actions

 GUI APIs for Toolbars & Button

 Background: $2sxc, edit-api and more

Web in 2017 is JavaScript

 @-annotations

 modules

 exports

 constructors

 let x = 7;

 Arrows (lambda) =>

 Classes & Interfaces

 Rx & Observables

 Multi-line strings

This is not Your Grandpa’s JS

 node & npm

 git

 TypeScript and ES7

 Patterns and
Architecture
 Dependency Injection,

SoC, SRP, …

 Reactive (Stream-based)
programming

 One way data flow

 Functional
programming…

Optionally learn this:

 Gulp / Grunt (so 2015)

 WebPack (so 2016)

Slowly unlearn this:

 Two-way data binding

 Promises

 jQuery

 Server rendered HTML

 MVC

Learn if you’re a Web Dev in 2017

The world at REST

REST

Representational State Transfer

Examples

 GET /content/Person

 GET /content/Person/17

 GET /query/All-Employees

 GET /query/Employees?team=accounting

 GET /query/everything-for-blog-details

 POST /content/Person
 Body: { name: Daniel, partner: 0 }

 Result: 512

 POST /content/Person/512
 Body: { partner: 19 }

1. URL-Pattern…

2. …targets the resource
you’re talking to

3. HTTP-Verbs for action
1. GET, POST, JUMP, …

4. Headers for more

REST in Pieces

1. ?x=y for params

2. HTTP-body for
payload or complex
params

3. Very open to
interpretation

 Founded 2sic in 1999

 Architect of 2sxc
since 2012

 Angular since 2014

 Blogger, daddy, nerd,
ceo, checklist-freak,
world-traveler, …

Daniel the iJungleboy – est ‘78

2sxc and REST – since 2014

+ external Endpoint since 2016

 Verbs: GET POST

 All: [root]/content/[typename]

 1: [root]/content/[typename]/[id]

 Query: [root]/query/[queryname]

2sxc Speaks REST since 2014

Real Example with a Query

This returns many
different streams in 1
request = fast!

Resulting JSON w/Streams of
Driver, Events, Subscriptions, …

 The DNN API-Root

 this changes by

 portal

 language

 + /app/auto/

 Auto-Resolve w/$2sxc

[root] Path

var sxc = $2sxc(tag|mid);

var promise = sxc.webApi.get(“content/Person”); // easy

/app/auto/etc.

 Use “auto” to auto-detect based on the
current module

 Practical

 Security-aware for this module (view/write
permissions)

 Context-aware – can deliver items assigned to
current module (private content)

 Side note: old code uses /app-content/

…/app/auto/content/[type]/[id]

 Access all items of a type

 Access one item of a type

 Create a new item

 Modify an existing item

if permissions allow…

…/app/auto/query/query-name

 Access pre-built queries

 …/app/auto/query/

 Provide parameters after query-name

 …/blog-items?category=recipes

 Default is no-access

 Typical settings for…
 Visualizers: Enable

“read” for view-users

 Forms: Enable “create”
for view-users

 Owned data:
 Enable “c” for viewers

 Enable “r/u/d” for
owners

 Public API: Enable
“read” for anonymous

REST Security / Permissions

REST in JS Frameworks

“External” Access

 Plain REST with URLs

 No helpers available / necessary

 Needs the app-name in the URL, as there is
no module-context

 Req. permissions on “anonymous”

/desk…/2sxc/api/app/blog/content/blogpost

AngularJS 1.x and Angular

 Use 2sxc4ng to bootstrap your application

 $http is automatically configured to
 Include DNN headers and security headers

 Auto-resolve paths like “content/…” etc.

 var promise = $http.get(“content/blogpost”);

 You can also use these services
 Content

 Query

 Toolbar

 Angular 4+ see next session

Any other JS in 2sxc views

 Get controller using $2sxc(tag | mid)

 Then resolve path using resolveServiceUrl

var url = sxc.resolveServiceUrl(“content/Person”);

 please help by creating libraries for KO,
React, Ember, Vue

Custom REST Endpoints

With C# WebAPIs

 Place C# files in folder
[appname]/api/

 Accessible as
[root]/app/auto/api/…

 Eg.

 MailController.cs

 bool Send(…)

 [root]/app/auto/api/Ma
il/Send

Just create your own WebAPI

CMS Actions & Toolbars

 Action:
 Name: “new”, “edit”, …

 Params:
 id: 27

 prefill={ link: “page:27” }

 Toolbar
 Button Group

 Button
 will run Action

 Settings
 Visibility, float, …

Overview

Actions and Params

 Can be called from any JS code
 Like text-links

<a onclick=`$2sxc(this).manage
.run(“new”, {“contentType”:”BlogPost”})`> +

 from any js-app like a manage-GUI in React

 Ca. 25 Actions

 Run-API (if user is logged in) using
sxc.manage.run(verb);
sxc.manage.run(verb, params);

 Documented in Wiki

Toolbars

 Toolbar Configuration with JSON

 Simple like “add,edit”

 Very detailed possible with a lot of json/js

 Custom buttons and everything is possible

 Settings

 float-behavior

 show-behavior

 ore-behavior (“…” button, right/left)

Toolbar Configuration JSON

 Config JSON is consistent

 JS

 C#

 AngularJS & Angular

 Please help with KO, React & Ember

 Multi-level configuration

 Trivial – just button names

 Sophisticated – full control of everything

Examples

Mobius: Admin-List filtered by current id Example in Blog for new & manage

@Edit.Toolbar only
appears if user has edit-
permissions

In JS you’ll need to check
that in your code.

$2sxc and sxc-instances

Background Know-How $2sxc

 $2sxc is a tiny js which is the foundation of
everything

 Auto included when users are logged in
and have edit-permissions

 Manually included for custom JS stuff

 Never redistribute yourself, as it is adapts
to changes in the 2sxc server

 Don’t worry about duplicate inclusions

Background know how $2sxc

 All actions are tied to a context

 the context is a content-block

 which is usually the mod. Instance

 Best way to get the context controller:
var sxc = $2sxc([some-html-tag]);

 this will auto detect the context

 Alternatives

 var sxc = $2sxc(moduleId);

 var sxc = $2sxc(moduleId, contentBlockId);

Quick Recap

 2sxc REST APIs

 all basic operations

 queries

 2sxc JS helpers for

 jQuery using
 sxc.WebApi.get…

 AngularJS by auto-
configuring $http
 …more services

 Angular beta/WIP

 $2sxc & context

 Actions run CMS
commands
 With params like prefill,

filter, etc.

 Toolbar is ultra-
configurable in JSON
 Custom buttons / icons

grouping

 Hover, align, more,…

 Toolbar consistent
across js/c#/angular

Recap Go Pro with 2sxc JS APIs

We can’t do everything
Please help us with more JS
framework libraries, especially
React, Knockout, Ember, Vue

Up Next: Angular & DNN

With more code

Enjoy 2sxc and REST

Questions?

